92 research outputs found

    Use of molecular tools to identify patients with indolent breast cancers with ultralow risk over 2 decades

    Get PDF
    IMPORTANCE The frequency of cancers with indolent behavior has increased with screening. Better tools to identify indolent tumors are needed to avoid overtreatment. OBJECTIVE To determine if a multigene classifier is associated with indolent behavior of invasive breast cancers in women followed for 2 decades. DESIGN, SETTING, AND PARTICIPANTS This is a secondary analysis of a randomized clinical trial of tamoxifen vs no systemic therapy, with more than 20-year follow-up. An indolent threshold (ultralow risk) of the US Food and Drug Administration–cleared MammaPrint 70-gene expression score was established above which no breast cancer deaths occurred after 15 years in the absence of systemic therapy. Immunohistochemical markers (n = 727 women) and Agilent microarrays, for MammaPrint risk scoring (n = 652 women), were performed from formalin-fixed paraffin-embedded primary tumor blocks. Participants were postmenopausal women with clinically detected node-negative breast cancers treated with mastectomy or lumpectomy and radiation enrolled in the Stockholm tamoxifen (STO-3) trial, 1976 to 1990. EXPOSURES After 2 years of tamoxifen vs no systemic therapy, regardless of hormone receptor status, patients without relapse who reconsented were further randomized to 3 additional years or none. MAIN OUTCOMES AND MEASURES Breast cancer–specific survival assessed by Kaplan-Meier analyses and multivariate Cox proportional hazard modeling, adjusted for treatment, patient age, year of diagnosis, tumor size, grade, hormone receptors, and ERBB2/HER2 and Ki67 status. RESULTS In this secondary analysis of node-negative postmenopausal women, conducted in the era before mammography screening, among the 652 women with MammaPrint scoring available (median age, 62.8 years of age), 377 (58%) and 275 (42%) were MammaPrint low and high risk, respectively, while 98 (15%) were ultralow risk. At 20 years, women with 70-gene high and low tumors but not ultralow tumors had a significantly higher risk of disease-specific death compared with ultralow-risk patients by Cox analysis (hazard ratios, 4.73 [95% CI, 1.38-16.22] and 4.54 [95% CI, 1.40-14.80], respectively). There were no deaths in the ultralow-risk tamoxifen-treated arm at 15 years, and these patients had a 20-year disease-specific survival rate of 97%, whereas for untreated patients the survival rate was 94%. Recursive partitioning identified ultralow risk as the most significant predictor of good outcome. In tumors “not ultralow risk,” tumor size greater than 2 cm was the most predictive of outcome. CONCLUSIONS AND RELEVANCE The ultralow-risk threshold of the 70-gene MammaPrint assay can identify patients whose long-term systemic risk of death from breast cancer after surgery alone is exceedingly low

    Debris disk size distributions: steady state collisional evolution with P-R drag and other loss processes

    Full text link
    We present a new scheme for determining the shape of the size distribution, and its evolution, for collisional cascades of planetesimals undergoing destructive collisions and loss processes like Poynting-Robertson drag. The scheme treats the steady state portion of the cascade by equating mass loss and gain in each size bin; the smallest particles are expected to reach steady state on their collision timescale, while larger particles retain their primordial distribution. For collision-dominated disks, steady state means that mass loss rates in logarithmic size bins are independent of size. This prescription reproduces the expected two phase size distribution, with ripples above the blow-out size, and above the transition to gravity-dominated planetesimal strength. The scheme also reproduces the expected evolution of disk mass, and of dust mass, but is computationally much faster than evolving distributions forward in time. For low-mass disks, P-R drag causes a turnover at small sizes to a size distribution that is set by the redistribution function (the mass distribution of fragments produced in collisions). Thus information about the redistribution function may be recovered by measuring the size distribution of particles undergoing loss by P-R drag, such as that traced by particles accreted onto Earth. Although cross-sectional area drops with 1/age^2 in the PR-dominated regime, dust mass falls as 1/age^2.8, underlining the importance of understanding which particle sizes contribute to an observation when considering how disk detectability evolves. Other loss processes are readily incorporated; we also discuss generalised power law loss rates, dynamical depletion, realistic radiation forces and stellar wind drag.Comment: Accepted for publication by Celestial Mechanics and Dynamical Astronomy (special issue on EXOPLANETS

    Assessment of Long-term Distant Recurrence-Free Survival Associated with Tamoxifen Therapy in Postmenopausal Patients with Luminal A or Luminal B Breast Cancer

    Get PDF
    Importance: Patients with estrogen receptor (ER)-positive breast cancer have a long-term risk for fatal disease. However, the tumor biological factors that influence the long-term risk and the benefit associated with endocrine therapy are not well understood. Objective: To compare the long-term survival from tamoxifen therapy for patients with luminal A or luminal B tumor subtype. Design, Setting, and Participants: Secondary analysis of patients from the Stockholm Tamoxifen (STO-3) trial conducted from 1976 to 1990, which randomized postmenopausal patients with lymph node-negative breast cancer to receive adjuvant tamoxifen or no endocrine therapy. Tumor tissue sections were assessed in 2014 using immunohistochemistry and Agilent microarrays. Only patients with luminal A or B subtype tumors were evaluated. Complete long-term follow-up data up to the end of the STO-3 trial on December 31, 2012, were obtained from the Swedish National registers. Data analysis for the secondary analysis was conducted in 2017 and 2018. Interventions: Patients were randomized to receive at least 2 years of tamoxifen therapy or no endocrine therapy; patients without recurrence who reconsented were further randomized to 3 additional years of tamoxifen therapy or no endocrine therapy. Main Outcomes and Measures: Distant recurrence-free interval (DRFI) by luminal A and luminal B subtype and trial arm was assessed by Kaplan-Meier analyses and time-dependent flexible parametric models to estimate time-varying hazard ratios (HRs) that were adjusted for patient and tumor characteristics. Results: In the STO-3 treated trial arm, 183 patients had luminal A tumors and 64 patients had luminal B tumors. In the untreated arm, 153 patients had luminal A tumors and 62 had luminal B tumors. Age at diagnosis ranged from 45 to 73 years. A statistically significant difference in DRFI by trial arm was observed (log rank, P <.001 [luminal A subtype, n = 336], P =.04 [luminal B subtype, n = 126]): the 25-year DRFI for luminal A vs luminal B subtypes was 87% (95% CI, 82%-93%) vs 67% (95% CI, 56%-82%) for treated patients, and 70% (95% CI, 62%-79%) vs 54% (95% CI, 42%-70%) for untreated patients, respectively. Patients with luminal A tumors significantly benefited from tamoxifen therapy for 15 years after diagnosis (HR, 0.57; 95% CI, 0.35-0.94), and those with luminal B tumors benefited from tamoxifen therapy for 5 years (HR, 0.38; 95% CI, 0.24-0.59). Conclusions and Relevance: Patients with luminal A subtype tumors had a long-term risk of distant metastatic disease, which was reduced by tamoxifen treatment, whereas patients with luminal B tumors had an early risk of distant metastatic disease, and tamoxifen benefit attenuated over time

    Quantum Interference in Superconducting Wire Networks and Josephson Junction Arrays: Analytical Approach based on Multiple-Loop Aharonov-Bohm Feynman Path-Integrals

    Get PDF
    We investigate analytically and numerically the mean-field superconducting-normal phase boundaries of two-dimensional superconducting wire networks and Josephson junction arrays immersed in a transverse magnetic field. The geometries we consider include square, honeycomb, triangular, and kagome' lattices. Our approach is based on an analytical study of multiple-loop Aharonov-Bohm effects: the quantum interference between different electron closed paths where each one of them encloses a net magnetic flux. Specifically, we compute exactly the sums of magnetic phase factors, i.e., the lattice path integrals, on all closed lattice paths of different lengths. A very large number, e.g., up to 108110^{81} for the square lattice, exact lattice path integrals are obtained. Analytic results of these lattice path integrals then enable us to obtain the resistive transition temperature as a continuous function of the field. In particular, we can analyze measurable effects on the superconducting transition temperature, Tc(B)T_c(B), as a function of the magnetic filed BB, originating from electron trajectories over loops of various lengths. In addition to systematically deriving previously observed features, and understanding the physical origin of the dips in Tc(B)T_c(B) as a result of multiple-loop quantum interference effects, we also find novel results. In particular, we explicitly derive the self-similarity in the phase diagram of square networks. Our approach allows us to analyze the complex structure present in the phase boundaries from the viewpoint of quantum interference effects due to the electron motion on the underlying lattices.Comment: 18 PRB-type pages, plus 8 large figure

    Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    Full text link
    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    Origin and Evolution of Saturn's Ring System

    Full text link
    The origin and long-term evolution of Saturn's rings is still an unsolved problem in modern planetary science. In this chapter we review the current state of our knowledge on this long-standing question for the main rings (A, Cassini Division, B, C), the F Ring, and the diffuse rings (E and G). During the Voyager era, models of evolutionary processes affecting the rings on long time scales (erosion, viscous spreading, accretion, ballistic transport, etc.) had suggested that Saturn's rings are not older than 100 My. In addition, Saturn's large system of diffuse rings has been thought to be the result of material loss from one or more of Saturn's satellites. In the Cassini era, high spatial and spectral resolution data have allowed progress to be made on some of these questions. Discoveries such as the ''propellers'' in the A ring, the shape of ring-embedded moonlets, the clumps in the F Ring, and Enceladus' plume provide new constraints on evolutionary processes in Saturn's rings. At the same time, advances in numerical simulations over the last 20 years have opened the way to realistic models of the rings's fine scale structure, and progress in our understanding of the formation of the Solar System provides a better-defined historical context in which to understand ring formation. All these elements have important implications for the origin and long-term evolution of Saturn's rings. They strengthen the idea that Saturn's rings are very dynamical and rapidly evolving, while new arguments suggest that the rings could be older than previously believed, provided that they are regularly renewed. Key evolutionary processes, timescales and possible scenarios for the rings's origin are reviewed in the light of tComment: Chapter 17 of the book ''Saturn After Cassini-Huygens'' Saturn from Cassini-Huygens, Dougherty, M.K.; Esposito, L.W.; Krimigis, S.M. (Ed.) (2009) 537-57

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Comparison of Breast Cancer Molecular Features and Survival by African and European Ancestry in The Cancer Genome Atlas

    Get PDF
    Importance: African Americans have the highest breast cancer mortality rate. Although racial difference in the distribution of intrinsic subtypes of breast cancer is known, it is unclear if there are other inherent genomic differences that contribute to the survival disparities. Objectives: To investigate racial differences in breast cancer molecular features and survival and to estimate the heritability of breast cancer subtypes. Design, Setting, and Participants: Among a convenience cohort of patients with invasive breast cancer, breast tumor and matched normal tissue sample data (as of September 18, 2015) were obtained from The Cancer Genome Atlas. Main Outcomes and Measures: Breast cancer–free interval, tumor molecular features, and genetic variants. Results: Participants were 930 patients with breast cancer, including 154 black patients of African ancestry (mean [SD] age at diagnosis, 55.66 [13.01] years; 98.1% [n = 151] female) and 776 white patients of European ancestry (mean [SD] age at diagnosis, 59.51 [13.11] years; 99.0% [n = 768] female). Compared with white patients, black patients had a worse breast cancer-free interval (hazard ratio, HR=1.67; 95% CI, 1.02-2.74; P = .043). They had a higher likelihood of basal-like (odds ratio, 3.80; 95% CI, 2.46-5.87; P < .001) and human epidermal growth factor receptor 2 (ERBB2 [formerly HER2])–enriched (odds ratio, 2.22; 95% CI, 1.10-4.47; P = .027) breast cancer subtypes, with the Luminal A subtype as the reference. Blacks had more TP53 mutations and fewer PIK3CA mutations than whites. While most molecular differences were eliminated after adjusting for intrinsic subtype, the study found 16 DNA methylation probes, 4 DNA copy number segments, 1 protein, and 142 genes that were differentially expressed, with the gene-based signature having an excellent capacity for distinguishing breast tumors from black vs white patients (cross-validation C index, 0.878). Using germline genotypes, the heritability of breast cancer subtypes (basal vs nonbasal) was estimated to be 0.436 (P = 1.5 × 10−14). The estrogen receptor–positive polygenic risk score built from 89 known susceptibility variants was higher in blacks than in whites (difference, 0.24; P = 2.3 × 10−5), while the estrogen receptor–negative polygenic risk score was much higher in blacks than in whites (difference, 0.48; P = 2.8 × 10−11). Conclusions and Relevance: On the molecular level, after adjusting for intrinsic subtype frequency differences, this study found a modest number of genomic differences but a significant clinical survival outcome difference between blacks and whites in The Cancer Genome Atlas data set. Moreover, more than 40% of breast cancer subtype frequency differences could be explained by genetic variants. These data could form the basis for the development of molecular targeted therapies to improve clinical outcomes for the specific subtypes of breast cancers that disproportionately affect black women. Findings also indicate that personalized risk assessment and optimal treatment could reduce deaths from aggressive breast cancers for black women

    Intratumor heterogeneity of the estrogen receptor and the long-term risk of fatal Breast cancer

    Get PDF
    Background: Breast cancer patients with estrogen receptor (ER)–positive disease have a continuous long-term risk for fatal Breast cancer, but the biological factors influencing this risk are unknown. We aimed to determine whether high intratumor heterogeneity of ER predicts an increased long-term risk (25 years) of fatal Breast cancer. Methods: The STO-3 trial enrolled 1780 postmenopausal lymph node–negative Breast cancer patients randomly assigned to receive adjuvant tamoxifen vs not. The fraction of cancer cells for each ER intensity level was scored by Breast cancer pathologists, and intratumor heterogeneity of ER was calculated using Rao’s quadratic entropy and categorized into high and low heterogeneity using a predefined cutoff at the second tertile (67%). Long-term Breast cancer-specific survival analyses by in-tra-tumor heterogeneity of ER were performed using Kaplan-Meier and multivariable Cox proportional hazard modeling adjusting for patient and tumor characteristics. Results: A statistically significant difference in long-term survival by high vs low intratumor heterogeneity of ER was seen for all ER-positive patients (P < .001) and for patients with luminal A subtype tumors (P ¼ .01). In multivariable analyses, patients with high intratumor heterogeneity of ER had a twofold increased long-term risk as compared with patients with low intratumor heterogeneity (ER-positive: hazard ratio [HR] ¼ 1.98, 95% confidence interval [CI] ¼ 1.31 to 3.00; luminal A subtype tumors: HR ¼ 2.43, 95% CI ¼ 1.18 to 4.99). Conclusions: Patients with high intratumor heterogeneity of ER had an increased long-term risk of fatal Breast cancer. Interestingly, a similar long-term risk increase was seen in patients with luminal A subtype tumors. Our findings suggest that intratumor heterogeneity of ER is an independent long-term prognosticator with potential to change clinical management, especially for patients with luminal A tumors

    DNA defects, epigenetics, and gene expression in cancer-adjacent breast: A study from the cancer genome atlas

    Get PDF
    Recurrence rates after breast-conserving therapy may depend on genomic characteristics of cancer-adjacent, benign-appearing tissue. Studies have not evaluated recurrence in association with multiple genomic characteristics of cancer-adjacent breast tissue. To estimate the prevalence of DNA defects and RNA expression subtypes in cancer-adjacent, benign-appearing breast tissue at least 2 cm from the tumor margin, cancer-adjacent, pathologically well-characterized, benign-appearing breast tissue specimens from The Cancer Genome Atlas project were analyzed for DNA sequence, copy-number variation, DNA methylation, messenger RNA (mRNA) sequence, and mRNA/microRNA expression. Additional samples were also analyzed by at least one of these genomic data types and associations between genomic characteristics of normal tissue and overall survival were assessed. Approximately 40% of cancer-adjacent, benign-appearing tissues harbored genomic defects in DNA copy number, sequence, methylation, or in RNA sequence, although these defects did not significantly predict 10-year overall survival. Two mRNA/microRNA expression phenotypes were observed, including an active mRNA subtype that was identified in 40% of samples. Controlling for tumor characteristics and the presence of genomic defects, this active subtype was associated with significantly worse 10-year survival among estrogen receptor (ER)-positive cases. This multi-platform analysis of breast cancer-adjacent samples produced genomic findings consistent with current surgical margin guidelines, and provides evidence that extratumoral RNA expression patterns in cancer-adjacent tissue predict overall survival among patients with ER-positive disease
    corecore